Day 33

Range Sensor Models

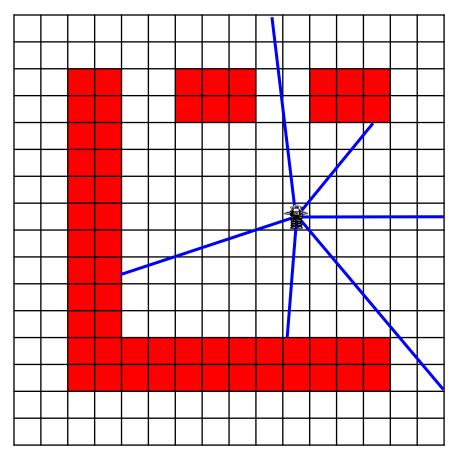
3/29/2012

• given the map and the robot's location, find the probability density that the range finder detects an object at a distance z_t^k along a beam

$$p(z_t^k | x_t, m)$$

the k is here because range sensors typically return many measurements at one time; e.g., the sensor might return a full 360 degree scan made up of K measurements at once

$$z_t = \left\{ z_t^1, z_t^2, ..., z_t^k, ..., z_t^K \right\}$$



- most range finders have a minimum and maximum range
- we seek a model that can represent
 - 1. the correct range measurement with noise
 - unexpected obstacles
 - 3. failures
 - 4. random measurements

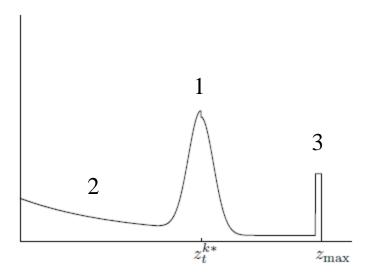


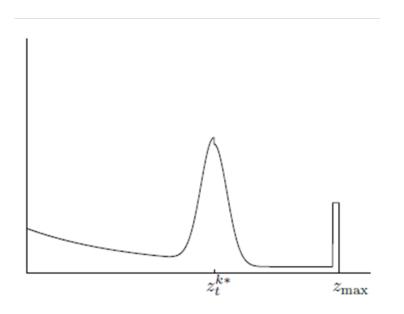
Figure 6.4 "Pseudo-density" of a typical mixture distribution $p(z_t^k \mid x_t, m)$.

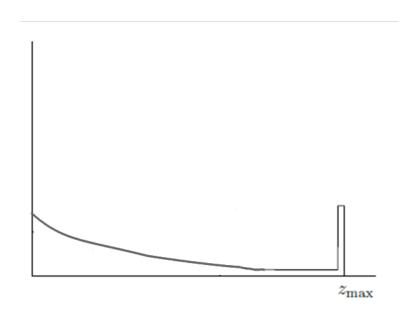
- beam-based model is computationally expensive
 - each measurement requires a ray intersection with the map to compute \boldsymbol{z}_t^{k*}

Velodyne HDL-64E S2 > 1.3 million measurements per second

- computational expense can be reduced by precomputing $z_t^{k^*}$
 - decompose state space into a 3D grid
 - much like histogram filter
 - for each grid location compute and store z_t^{k*}
- much faster than ray casting but...

- $p(z_t^k | x_t, m)$ changes abruptly for small changes in x_t
 - lacktriangleright especially true for small changes in heta

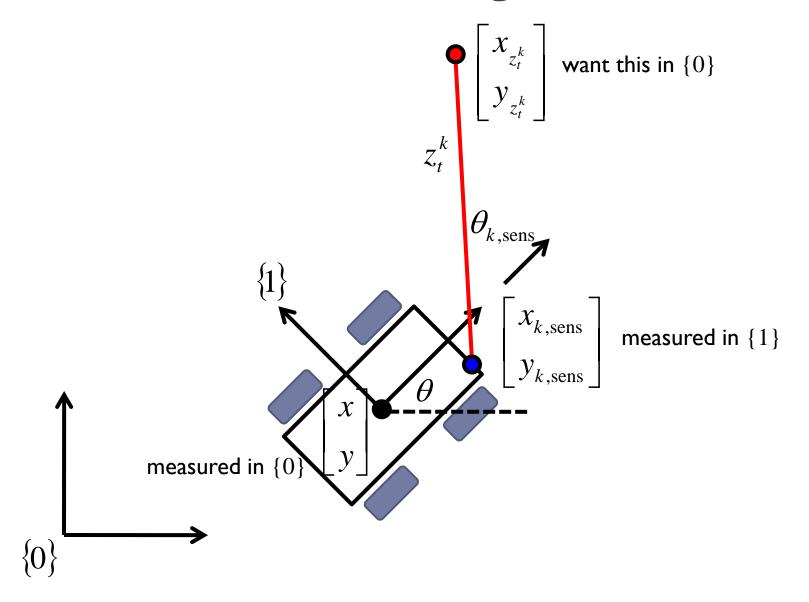




map obstacle detected for robot bearing θ

map obstacle missed for robot bearing $\theta + d \; \theta$

- an alternative model called likelihood fields overcomes the limitations of the beam model
 - but is not physically meaningful
- recall that a range measurement z_t^k is a distance measured relative to the robot
 - can we transform z_t^k into a point in the map?



$$\begin{bmatrix} x_{z_t^k} \\ y_{z_t^k} \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_{k,\text{sens}} \\ y_{k,\text{sens}} \end{bmatrix} + z_t^k \begin{bmatrix} \cos(\theta + \theta_{k,\text{sens}}) \\ \sin(\theta + \theta_{k,\text{sens}}) \end{bmatrix}$$

9 3/30/2012

- similar to the beam model, we assume 3 types of sources of noise and uncertainty
- I. correct measurement with noise
- 2. failures
- 3. random measurements

10 3/30/2012

- Correct Measurement with Noise
- once we have $[x_{z_t^k} \ y_{z_t^k}]^T$ we find the point on an obstacle in the map that is nearest to $[x_{z_t^k} \ y_{z_t^k}]^T$ and compute the distance d between those two points
- \blacktriangleright this measurement is modeled as a zero-mean Gaussian with variance $\sigma_{\rm hit}^2$

$$p_{\rm hit}(z_t^k | x_t, m) = \varepsilon_{\sigma_{\rm hit}^2}(d)$$

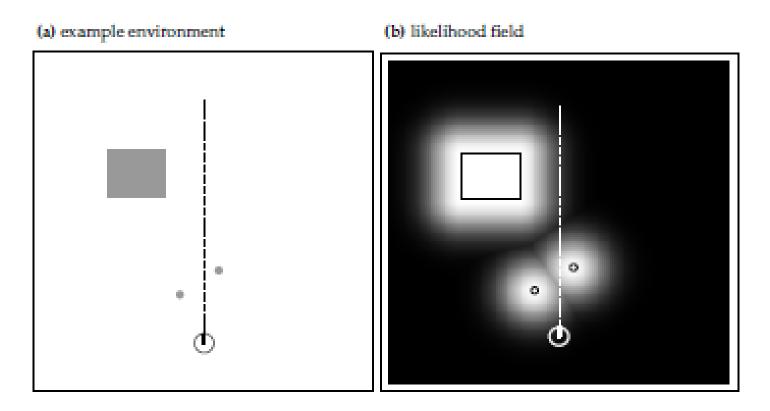
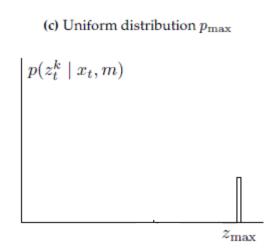


Figure 6.8 (a) Example environment with three obstacles (gray). The robot is located towards the bottom of the figure, and takes a measurement z_t^k as indicated by the dashed line. (b) Likelihood field for this obstacle configuration: the darker a location, the less likely it is to perceive an obstacle there. The probability $p(z_t^k \mid x_t, m)$ for the specific sensor beam is shown in Figure 6.9.

Failures

- range finders can fail to sense an obstacle in which case most sensors return $z_{\rm max}$
- modeled as a point mass distribution centered at $z_{\rm max}$

$$p_{\max}(z_t^k | x_t, m) = \begin{cases} 1 & \text{if } z_t^k = z_{\max} \\ 0 & \text{otherwise} \end{cases}$$



- 3. Random Measurements
- unexplainable measurements are modeled as a uniform distribution over the range $[0, z_{\rm max}]$

$$p_{\text{rand}}(z_t^k | x_t, m) = \begin{cases} \frac{1}{z_{\text{max}}} & \text{if } 0 \le z_t^k \le z_{\text{max}} \\ 0 & \text{otherwise} \end{cases}$$

 $p(z_t^k \mid x_t, m)$

 z_{max}

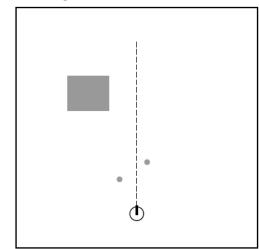
(d) Uniform distribution p_{rand}

the complete model is a weighted sum of the previous three densities with weights

$$W_{\text{hit}} + W_{\text{max}} + W_{\text{rand}} = 1$$

$$p(z_t^k | x_t, m) = \begin{bmatrix} w_{\text{hit}} \\ w_{\text{max}} \\ w_{\text{rand}} \end{bmatrix}^T \begin{bmatrix} p_{\text{hit}}(z_t^k | x_t, m) \\ p_{\text{max}}(z_t^k | x_t, m) \\ p_{\text{rand}}(z_t^k | x_t, m) \end{bmatrix}$$

3/29/2012



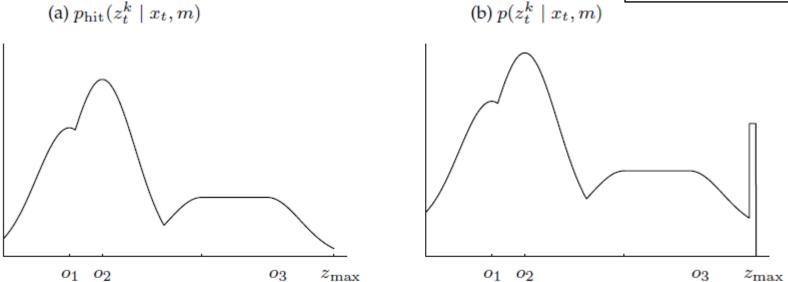


Figure 6.9 (a) Probability $p_{hit}(z_t^k)$ as a function of the measurement z_t^k , for the situation depicted in Figure 6.8. Here the sensor beam passes by three obstacles, with respective nearest points o_1 , o_2 , and o_3 . (b) Sensor probability $p(z_t^k \mid x_t, m)$, obtained for the situation depicted in Figure 6.8, obtained by adding two uniform distributions.